skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Owens, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Box delivery is a complicated task and it is challenging to predict the box delivery motion associated with the box weight, delivering speed, and location. This paper presents a single task-based inverse dynamics optimization method for determining the planar symmetric optimal box delivery motion (multi-task jobs). The design variables are cubic B-spline control points of joint angle profiles. The objective function is dynamic effort, i.e., the time integral of the square of all normalized joint torques. The optimization problem includes various constraints. Joint angle profiles are validated through experimental results using root-mean-square-error (RMSE) and Pearson’s correlation coefficient. This research provides a practical guidance to prevent injury risks in joint torque space for workers who lift and deliver heavy objects in their daily jobs. 
    more » « less
  2. null (Ed.)
    Box delivery is a complicated manual material handling task which needs to consider the box weight, delivering speed, stability, and location. This paper presents a subtask-based inverse dynamic optimization formulation for determining the two-dimensional (2D) symmetric optimal box delivery motion. For the subtask-based formulation, the delivery task is divided into five subtasks: lifting, the first transition step, carrying, the second transition step, and unloading. To render a complete delivering task, each subtask is formulated as a separate optimization problem with appropriate boundary conditions. For carrying and lifting subtasks, the cost function is the sum of joint torque squared. In contrast, for transition subtasks, the cost function is the combination of joint discomfort and joint torque squared. Joint angle profiles are validated through experimental results using Pearson’s correlation coefficient (r) and root-mean-square-error (RMSE). Results show that the subtask-based approach is computationally efficient for complex box delivery motion simulation. This research outcome provides a practical guidance to prevent injury risks in joint torque space for workers who deliver heavy objects in their daily jobs. 
    more » « less